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1 Objectives

The objective of our research was to develop new control theory and dynamical systems/ergodic
theory tools for the problems of active control of complex fluid systems and control of mixing in
fluids and apply the developed theoretical tools to problems of active control of mixing in combustion
chambers of jet engines.

2 Timeline of Effort
2.1 2000-2001

We have continued the work (started in a previous AFOSR-sponsored research) on control of complex
nonlinear systems and pursued applications to fluid flow control. At the PI's group, 1 graduate
student (Umesh Vaidya) was working on the problem of linking issues in KAM theory and small
input control theory. A postdoc (Dmitri Vainchtein) worked on the problem of vortex merger control
using tools from averaging theory. The PI worked on aspects of controllability of group translations
that had ramifications for both of the previously mentioned problems and collaborated with Bassam
Bamieh (UCSB) on mixing by optimal destabilization. The PI pursued a collaboration with a
number of experimental groups (F. Sotiropoulos at Georgia Tech and Tom Solomon at Bucknell
University) on theoretical, computational and experimental aspects of mixing. There was an active
exchange of information with researchers from the United Technologies Research Center.

The new developments in this period were: 1) Development of a new approach to controllability
of Hamiltonian systems using ergodic theory/group theory tools, [13, 28] 2) Study of control of vortex
merger using a combination of dynamical systems/control theory techniques {32], 3) A framework
for optimal destabilization of dynamical systems [2] 4) Development of theoretical framework for
experimental studies of mixing [18]. ,

Overall this year we developed a promising approach to control of flows that spun off ideas for
development of techniques in control of Hamiltonian systems. These ideas led to work on funda-
mental aspects of group translation controllability which in turn told us how to harness the internal
dynamics of a fluid fiow in order to achieve an objective. At all times we were led by the key aspect
of the physical problem we were interested in: control of vortex merger.
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2.2 2001-2002

We have continued the work on control of complex nonlinear systems and pursued applications
to fluid flow control. At the PI's group, 1 graduate student (Umesh Vaidya) was working on the
problem of in Kolmogorov-Arnold-Moser theory of three-dimensional, volume-preserving flows [29].
A postdoc (Dmitri Vainchtein) worked on the problem of flow control using tools from dynamical
systems theory [33]. The problem of dynamical systems with moving averages was considered in [36].
The PI worked on problems of model validation of Random Dynamical Systems in the framework
of the Koopman operator [16] and also applied ideas from control of mixing to a design of a pasive
micromixer in collaboration with an experimental group [26], in a paper that apearred in the journal
Science. There was an active exchange of inforimation with researchers from the United Technologies
Research Center on model validation, mixing in combustion chambers and jet noise.

There was some unification of different topics into a framework: the study of KAM theory in three
dimensions in [29)] is is linked to control-theoretic results of the type we reported in two dimensional
maps in [28]. This in turn is important for mixing in three-dimensional flows of the type occuring in
combustion chambers. The extension of previous results on model validation to Random Dynamical
Systems [16] opens the door to a diverse set of applications of these techniques. These results are
arrived at in a unified framework of Random Dymamical Systems which promises to be useful in
other areas such as uncertainty analysis.

2.3 2002-2003

We have continued the work on control of complex nonlinear systems and pursued applications to
control of mixing, control of nanoscale processes and control of microscale mixing. At the PI’s
group, 1 graduate student (Umesh Vaidya) was working on the problem of control of discrete-time,
conservative systems [30, 31] and quantum control [27]. Another student (Zoran Levnajié) worked
on problems in visualization of dynamical systems [9]. A postdoc (Dmitri Vainchtein) continued
working on the problem of flow control using tools from dynamical systems theory and vortex
dynamics [35, 33] and pursued a problem in control of nanoparticle separation [34]. The PI worked
on ergodic theory methods for control of systems with drift [14, 15] and optimization of mixing in a
paper appeared in the journal Nature [25]. The PI also worked on extending the framework for model
validation of Random Dynamical Systems in the framework of the Koopman operator developed in-
[16] to dynamical systems treatment of uncertainty analysis [17]. There was an active exchange of
information with researchers from the United Technologies Research Center on uncertainty analysis,
bluff body combusting flow control [11] micromixing and jet noise. ,

3 Accomplishments

The research achievements of the project have been:

3.1 Group theory, the Anti-KAM results and controllability of Hamilto-
nian systems

In [13] we pursued the question of controllability of group translations. Systems theory on Lie
groups [3](8] is a well-developed and beautiful subject relying on differential-geometric and algebraic
methods. In [13] we utilize some ergodic theory concepts that seem to be useful for the analysis
of controllability for translations on abstract groups. These results in turn have consequences for
controllability of linear systems with input saturation, control of chaos and control of mixing in
fluids.

As a motivation, we ask the following simple question: Let T be the translation of the circle S!
such that T : § — 6 + w and at each discrete time step w can be chosen from a set U C [0,1).




Assuming the iteration starts from 8, can every #; on the circle be reached in finite time by the
appropriate choice of w’s, i.e. is it true that for every 61,00 € S there exist n, w; € U such
‘that 6; = 6+ Y- wi. If yes, T is called controllable. Notice that without loss of generality
we can set §p = 0 and thus instead consider the question of reachability from 0. We analyzed
controllability and found an interesting link between ergodic properties of translations on groups
and their controllability. In particular, if a compact group has an ergodic element (i.e. an element
such that group translation under that element is an ergodic dynamical system) than with any input
set U of positive measure that contains the ergodic element the group translation is controllable.
These results can be extended to non-compact groups that are covering spaces for compact groups.
We treat the case of R™ using the results on torus translations to obtain results on the controllability
ofz —~z+y wherex € RY,yeUC R".

The general theme that needs to be stressed is that if the system has sufficiently complicated
(say ergodic - which implies almost controllable) dynamics with some inputs, it is enough to include
one of these inputs in the set of possible inputs which in addition needs to be of positive measure in
order to get controllability. The relationship between ergodicity and controllability is interesting and
points to further exploration of connections between ergodic theory a.nd control theory previously
pursued in [6, 1, 5).

There are two connections with applied issues that are of interest: there has been a significant
amount of work in the physics community on the so-called Ott-Grebogi-Yorke (OGY) control algo-
rhitm [22, 20] where the ergodic properties of the attractor are used to bring the system close to the
desired location. The paper [13] provides a rigorous template of ideas upon which a mathematical
theory of OGY-type approaches can be built. These ideas in turn seem to be of crucial importance
in control of fluid flows, where the central issue is achieving an improvement in performance with
small control inputs. In order for this to be possible, natural instabilities of the system need to be

"exploited. This is related to the global ergodic properties of the system and fits within the kind of
analysis that we pursued.

Techniques developed in [13] can be used in much more complicated control situations than
group translation control. For example, in [28, 30] we pursued a study of controllability under small
input control of the following boundary and orientation-preserving discrete system on an annulus
[a,b] x St:

Tty1 = Tg + e + u(t) (e, 1) (mod 1), (1)
Yer1 = Ye + eu(t)g(ze, v2)- 2

when u(t) = 1, this is a well-studied system. In particular, if ¢ = 0, the dynamics is confined to
invariant curves y = const. The so-called KAM (Kolmogorov-Arnold-Moser) theorem states that
most of the invariant curves persist if the perturbation is sufficiently small. Using the techniques
similar to those developed in [13] we prove that under mild conditions on f and g and u € [~1,1]
the system 1 is controllable. This result is constructive in the sense that u is given as feedback
control. Such results can be extended to more general Hamiltonian system contexts. A particular
application that we are currently pursuing is satellite formation control.

3.2 Control of vortex merger

The above ideas indicate a way of using system’s internal dynamics to achieve a control objective
with bounded input. A specific problem of great interest in fluid dynamics is that of vortex merger,
that we studied in [35]. Two-dimensional incompressible flows tend to generate coherent vortical
structures. In fact, many of the flows of AFOSR interest exhibit coherent vortices: diffuser flows,
trailing airplane wing vortices, flow over a cavity etc. Vortices of same sign tend to rotate around each
‘other and merge, producing tonal sound. In such situations flow control problem might necessitate
enhancement or prevention of a vortex merger. We have studied some low-order modelling schemes
for vortex merger control. '




A vortex pair with the vortices of the same sign can be described by four variables: the position
of the vorticity centroid, VC, x., the vortex separation, VS, and the relative phase of vortex rotation,
@. The position of the VC is

1
Xe=F (P1x; + Ioxs) . (3)

where I'; is the strength of the i-th vortex and I' = I'; + I's. We restrict our discussion to the case
of same sign vortices. The VS, r, is equal to the sum of the distances of the vortices 1 and 2 from
the VC, r;, i = 1,2, respectively: r = r; + ro.

In the absence of a control field (the unperturbed system) each vortex moves along the circle of
radius r; with the same angular frequency {2, staying on opposite sides from the VC. The position

of the VC and the VS are the integrals of the unperturbed system.

: Suppose that an imposed perturbation (control) is small: a characteristical time scale of the
unperturbed system is much smaller than a characteristical time scale of the perturbation. This
approximation allows us to average the perturbation over a fast period and consider an averaged
system instead of the exact one. In our particular case this approximation means that we assume
that the drift of, say, a VC over a the period of vortex rotation is much smaller than the VS. Such
an approach can be considered as a particular case of the singular perturbation methods [23]

Let € <« 1 be a characteristical amplitude of the perturbation. Then the evolution equations of
the perturbed system has the following form:

Ze =¢ef1 (Xe, 7, p,8),
Qc =¢fo (xc,'r, So’t) s
T =ef3 (X, 0,1,
¢ =0(r) +efs(Xe,m0,1) . ' (4

In (4) the functions f; are 2x-periodic in ¢. It follows from (4) that the rate of change of ¢ is much
larger (by a factor of order 1/¢) than the rate of change of other variables. That is why we call ¢ a
fast variable and x. and r — slow variables.

Various actuation methods such as an external strain field and blowing/suction were studied
leading to different functions f; in 4. Averaging method was applied leading to results on optimal
change of vortex separation. It was found, using Pontryagin maximum principle that a pa.rtlcula.r
bang-bang scenario lea.ds to optimal protocol in the blowing/suction actuation case.

3.3 Optimal destabilization of dynamical systems

There are a number of applied situations where the problem of interest involves destabilization of
a solution of a dynamical system. Consider for example the problem of inverted pendulum. The
stable equilibrium solution needs to be destabilized in order to get to the inverted position of the
pendulum. A framework for solving such problems in an optimal way was considered in [2]. We
consider the following LTI system which is subject to both exogenous disturbances w and controls u

Az + Byw + Bsu -
Cz )

F
z

The signal z represents the output of the system with the C matrix chosen such that the 2-norm of
z represents the proper notion of “size” of output (or state). =

The above is the formulation of the so-called standard problem in robust control, where the

" objective is to design the control u such that the “gain” of the system from w to z is minimized.

The gain is usually measured in terms of the 12, H™ or £! system norms. This problem can also be




viewed as a differential game in the sense that the disturbance w is trying to maximize [|z|], while
the control u is trying to minimize it.

The problem we are interested in is significantly different. In our formulation, it is desired that
- the gain from w to z be maximized rather than minimized. This of course is a trivial problem if
there are no constraints on the size of the control. Indeed, with mild controllability assumptions
on (A, By) it is always possible to design a feedback such that max,o H is infinite. Therefore, a
more meaningful statement of the problem is as follows

Design a feedback control for the system (5) such that the gain maxy,sxo H is mazimized, while
keeping the control effort ||u]| relatively small.

From the above, it is clear that the essence of this destabilization problem is the trade-off between
enlarging the closed loop gain and keeping the control effort small. In regulation problems, the trade-
off between regulation (minimizing the gain) and control effort is typically formulated by augmenting
the control signal « into the regulated variables z. In our current problem, this is not applicable
since the objective is to enlarge z while keeping u small.

It is possible however to have a linear quadratic formulation that captures the above problem
statement as follows

Given a trade-off parameter «, design a feedback control for the system (5) such that u mazimizes
the guantity
o =l 6)
w0 [lw]]? + o?[lull?’ :
subject to the dynamical constraints (5).
This formulation essentially amounts to adding the requirement that ||u|| be small as a soft

constraint. The above ratio is a lower bound on the ratios H and éjﬂ%l" Thus, the maximization
of the ratio in (6) will insure that ajul| is small compared to ||z]|, and that the closed loop gain is
large. The parameter « is then used to capture the trade-off, a large o would insure that the control
effort is kept small, while a small o would maximize the gain at the cost of a potentially large [ju]|.
It can be reformulated as

Given v > 0, find u such that

212 2

su > v

p —_—— e
wio [[w]|® + o|ul?

subject to the dynamical constraints (5).

‘We can convert this problem formulation to that of finding the worst case inputs w and u that
maximize a quadratic objective. Over finite time horizons, this is clearly a well posed L.Q problem,
but over infinite time horizons, we expect feedback gains thus obtained to yield unbounded signals u
and z. This is however not a conceptual difficulty since we are after the most destabilizing feedback
gains. It turns out that even though the signals are unbounded as the time horizon goes to infinity,
the feedback gains limit to a well defined gain. The solution to this problem was obtained in terms
of a differential Ricatti equation.

3.4 Experimental visualization of mixing in vortex breakdown flows

In flows of practical importance it is important both from the perspective of understanding dynamics
and designing control to have robust visualization tools for mixing. One such class of flows is
those exhibiting vortex breakdown. In the work [18] we analyzed an experimental technique for
constructing Poincaré maps in flows exhibiting chaotic advection and developed the theoretical
framework based on ergodic theory that explains the reasons for the success of this approach. The
technique is non-intrusive and, thus, simple to implement. Planar laser-induced fluorescence (LIF) is
employed to collect a sufficiently long sequence of instantaneous light intensity fields on the plane of




section of the Poincare map (defined by the laser sheet). The invariant sets of the flow are visualized
by time-averaging the instantaneous images and plotting iso-contours of the so resulting mean light
intensity field. By linking the Eulerian time-averages of light intensity at fixed points in space with
the Lagrangian time-averages along particle paths passing through these points, we showed that
ergodic theory concepts can be used to show that this procedure will indeed visualize invariant sets
of the Poincare map. As the technique is based on time-averaging, the rates of convergence are
important: we showed that inside regular islands the convergence is fast.

3.5 KAM theory for three-dimensional, action-action-angle maps

An important class of three-dimensional volume-preserving maps and flows arises as a perturbation
from integrable action-action-angle maps and flows. For example, three-dimensional, time dependent
perturbations of vortex rings with no swirl lead to such Poincaré maps. We studied properties of this
class of maps and flows. While action-angle-angle volume-preserving maps admit an analogue of the
KAM theorem, general results on non-existence of two-dimensional invariant manifolds of action- _
action-angle maps are proven in [12]. Non-existence of such two-dimensional invariant manifolds
means poss1b111ty of global transport and a mechanism for such transport - the local mechanism of
resonance induced dispersion [4] - was studied perturbatively. Resonance induced dispersion was
shown to arise from the existence of periodic orbits of saddle-focus type that survive perturbation
at places where two-dimensional invariant manifolds break down. Still, in some flows of practical
importance in combustion chambers, resonance-induced dispersion does not happen and stability of
particle motion is seen. Our purpose is to understand the context in which this is possible.
In [29] we studied maps of the type '

Ji =N +efi(r, h2, 9),
Jé = J2 + €f2(J1, J23 ¢):
¢’=¢+ J1+€f3(J1,J2,¢). (7)

This is an example of a three-dimensional, volume preserving map arising from periodically driven
three-dimensional fluid flows such as perturbed vortex ring flows occuring in combustion chambers
under pulsed flow control. In this example, in the integrable case (no pulsing and no swirl) Jz, ¢
should be thought of as azimuthal and cross-sectional angle, while J; is the torus-labeling coordinate.
Our study indicates that such maps admits a KAM-type theorem on stability of particle motion. In
particular, for small ¢ there is a large set of invariant tori that survive the perturbation and thus
the hot core inside the vortex ring stays stable.

3.6 Control of vortex merger - the vortex patch case

A problem of great interest in flow control, due to its importance in shear low dynamics (and thus
for combusting flows, jet noise, etc.), is that of vortex merger. We studied the case when vortices
are at a large distance compared with the core radius in [35]. The case when the vortices are in
close proximity can be studied using the vortex patch model, as done in [33] The configuration of
two elliptical vortex patches is shown in figure 1.

In [33] the equations of motion for the aspect ratio and the onentatlon angle with control are
developed to model the motion of identical patches, including forcing or preventing the merging,
using a point vortex located at the center of the vorticity. We implemented two different approaches
to this problem: using the method of flat coordinates (used for vortex control previously in [21])
and using averaging theory (extending the methods in [32]).




Figure 1: A system of two elliptical vortex patches.

3.7 Model validation for Random Dynamical Systems

We developed a formalism for a class of stochastic systems - Random Dynamical Systems - in the
context of Koopman operator akin to that of deterministic systems that allows for a systematic com-
parison of different models or data with stochastic elements. In this extension of the deterministic
theory we studied deterministic factors of stochastic systems - a concept that might help in under-
standing e.g. the abundance of oscillatory phenomena on various time-scales in climate dynamics
(see e.g. [24]). Our methods allow for model parameter identification in this context. They also al-
low for an easy distinction between processes having a deterministic factor on a circle (deterministic
limit cycling) with additive noise, and lightly damped but stable (i.e. determistic factor has a fixed
point) process - a question that received some interest in the combustion literature 10, 7).

On the applied side, the work on invariant measures described above can be used to distinguish
between limit cycling systems and linear lightly damped systems with noise. For example, methods
based on this theory were applied to the combustion instability problem at the United Technologies
Research Center. A simple model of a combustion process is an inteconnection of a linear acoustic
model and nonlinear heat release model that consists of a delay and a saturation function. The sys-
tem is driven by broad-band stochastic disturbance. More precisely, a discrete-time model equations
used to simulate pressure oscillations in the UTRC combustion rig were

2l = (—o + cos(woTs))x} — sin(woTs)z?,
22, = sin(woTs)z} + (~a + cos(woTy))z? + Ksh(Kozl_y) + Kini, (8)

where T, = 0.0005, wy = 27 fo, K3 = 0.0525, and h is a saturation function defined as h(u) = u
for —s < u < s, h(u) = —s for u < —s, and h(u) = s for s < u. Variables z},z? are unsteady
components of pressure in the combustor at two different times, while variable n; represents noise.
The model was implemented in Simulink. To simulate noise, a Simulink model of a band-limited
white noise with power 0.01 was used. The model described by (8) is a Discrete Random Dynamical
System (DRDS), in a class for which we developed theoretical results described above. We choose a
2-dimensional embedding space for the system (which is formally N + 2-dimensional).

To obtain the harmonic averages 20,000 samples (10 seconds sampled at 2 kHz) of experimentally
obtained combustor pressure and pressure from Simulink model simulations were used. The experi-
mental data presents a spectrum with a single peak at about f = 207. We examined the results of
harmonic analysis results for a range of model parameters lead by this spectral information. Values
of fo, N, e, K3, s, and K; were varied until a good agreement between harmonic averages of results
of simulations and experimental data was found. A good fit to experimental data was obtained for
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Figure 2: Time average plot for indicator functions from experimental data.

parameters fo = 207, N =10, o = 0.03, K, = 2000, s = 5, K; = 0.0788. "
Let p(4) be the pressure at time /2000 obtained from experimental data or the model. In figures
2 and 3 we show the plot of time-averages '

20000
i) = 5555 2 Xd) (P(3))
i=1

of indicator functions x; j) on squares defined in the embedding space (an indicator function is 1 if
a point is inside the square of side length [ and 0 elsewhere). A grid of 10 x 10 indicator fiunctions
was used with | = 2 psi, their time-averages computed and assigned to nodes labelled (z,) where
i,j vary from 1 to 10. The results shown in 2, for the experimental data and 3 for the model that
we found a good fit to the data are, for the sake of better visualization, linearly interpolated shaded
contour-plots of the time-averages.

3.8 Control of conservative systems

In the papers [14, 15] we presented a framework for developing necessary and sufficient conditions for
controllability in a class of conservative systems with drift: Systems preserving a smooth measure
on the phase space, such as Hamiltonian systems of classical dynamics or incompressible flows of
fluid dynamics attract a lot of interest in control theory. In [14] we describe some work on the
notion of controllability in systems that are measure-preserving and possess drift. Relationship
between controllability, a fundamental concept in control theory, and the concepts of integrability
and ergodicity, fundamental in dynamical systems theory is addressed. The basic idea is that
studying reccurence (or ergodic) properties of trajectories of the drift is key to establishing necessary
and sufficient conditions for controllability in such systems. The benefit of this approach is that
controllability proofs contain a constructive procedure for control. Control of Hamiltonian systems
with drift is investigated for the case when the drift is integrable. Transformation of the system to
action-angle coordinates is used to describe the ergodic partition of the drift. This is in turn used to
obtain conditions for controllability of such systems. The key idea is that control must be capable
of moving the system transverse to any set in the ergodic partition of the drift Hamiltonian vector
field. Using this, additional results on controllability of more general systems are obtained.




Figure 3: Time averages for indicator functions for model with parameters that provide a good
match with the experimental data.

In the paper [31] we study the controllability question for a class of discrete time nonlinear
systems which arise as a discretization of a continuous time integrable Hamiltonian systems. We
give necessary and sufficient condition for global controllability of these discrete time nonlinear
systems under the assumption that system satisfies weak regularity condition. We also show that
under these regularity condition the system is almost everywhere controllable. The result in this
paper are an extension of results in [30].

3.9 Visualization of dynamical systems using harmonic analysis methods

A method for visualization of dynamical systems based on harmonic analysis was pursued in [9]. We
considered a discrete-time dynamical system

Ziy1 = T(z),

vi = f(=z:), 9

where i € Z, x; € M, T : M — M measurable and f a smooth real function on a compact
Riemannian manifold M endowed with the Borel sigma algebra. We call the function f* the time
average of a function f under T if

-1

f*(@) = lim — Zﬁﬁv

1—0

almost everywhere (a.e.) with respect to the measure 4 on M. The time average f* is a function of
the initial state z. This function can be used to visualize invariant sets [19]. Harmonic averages of

the form
1‘ n-1 2
- 127w ]
o= Jim O3 e E)),

can be used to visualize resonances in the system (invariant sets for higher iterates of the map).
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Figure 4: Time evolution of mixing in an electrohydrodynamically driven flow.

3.10 Controlled capture into resonances

In the paper [34] we propose a method to use capture into resonance to control the behavior of a cer-
tain class of dynamical systems. In many dynamical systems the coupling between the unperturbed
system and weak periodic perturbations (wave) can be reduced to a purely resonant interaction
occurring’in the vicinity of a certain surface in the phase space. While resonance interaction can
change invariants of the unperturbed system (e.g. energy), it is random in nature, and, consequently,
is rather inefficient as a mechanism of regular transport. We propose a method to structure the res-
onance interaction with little additional cost. When the nominal dynamics brings the system close
to a resonance surface we apply a short control pulse to force the capture of a phase point into the
resonance with the wave. A captured point is transported by the wave across the energy levels. We
apply the second pulse to release a phase point from the resonance when the desired energy level is
achieved. As a model problem we consider dynamics of a charged nanoparticle in an electromagnetic
field.

3.11 TUniform, resonant chaotic mixing in fluid flows

In the paper [25] which appeared in the journal Nature, we pursued experimental confirmation of
the theory developed in [12]. Laminar flows can produce particle trajectories that are chaotic, with
nearby tracers separating exponentially in time. For time-periodic, two-dimensional and steady,
three-dimensional (3D) flows, enhancements in mixing due to chaotic advection are typically lim-
ited by impenetrable transport barriers that form at the boundaries between ordered and chaotic
mixing regions. However, for time-dependent, 3D flows, it has been proposed theoretically [12] that
completely uniform mixing is possible via a resonant mechanism called singularity-induced diffusion
(SID), even if the time-dependent and 3D perturbations are infinitesimally small. It is important to
establish the conditions for which uniform mixing is possible and whether or not those conditions are
met in flows that typically occur in nature. In the paper [25] we present experimental and numerical
studies of mixing in a laminar, weakly 3D, weakly time-periodic vortex flow. An oscillating horizon-
tal vortex chain is generated magnetohydrodynamically; the flow is weakly 3D due to a secondary
.flow forced spontaneously by Ekman pumping, a mechanism common in vortical flows with rigid
boundaries. As predicted, completely uniform mixing is found, only for oscillation periods close to
typical circulation times. In figure 4 we present experimental evidence of fast mixing of dye in the
experimental apparatus.

4 Personnel supported:

Faculty: Igor Mezié, Postdoctoral fellow: Dmitri Vainchtein, Partially supported graduate
students: Umesh Vaidya, Thomas John, Zoran Levnajic, Andre Valente.
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5 Interactions/transitions:

5.1 Academic interactions/Transitions

The PI and other members of the group gave a number of invited lectures on the topics of research
described here, for example at Northwestern University, Caltech, SIAM Conference on Applications
of Dynamical Systems, UCLA Institute for Pure and Applied Mathematics, at NOLCOS 2001,
Caltech, University of Southern California, DARPA, Oberwolfach "Dynamical Systems Methods in
Fluid Dynamics” meeting, US National Congress of Theoretical and Applied Mechanics etc., MIT,
Boston University, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, University of
Minnessota, etc. The PI and collaborators from UTRC (Andrzej Banaszuk and Satish Narayanan)
participated in two sessions at the 2000 CDC, with Narayanan and IM presenting an overview paper
on flow control. The PI co-organized (with Vered Rom-Kedar) a minisymposium on mixing at the
2001 SIAM Conference on Applications of Dynamical Systems and presented a talk there on Control
of Mixing. Dmitri Vainchtein and Umesh Vaidya participated in a summer program on Nonlinear
Dynamics at the Technical University of Denmark. Dmitri Vainchtein presented a talk on vortex
merger work at the united Technologies Research Center and also participated in Southern California
Control Conferences. Umesh Vaidya gave a talk at one of these meetings as well.

5.2 Industrial interactions

There was an interaction with UTRC’s Control and Dynamics group on topics in flow control. The
PI interacted with Andrzej Banaszuk’s group on control of combustion instabilities. Some of the
model validation ideas are being extended to treat uncertainty analysis in models together with a
group from United Technologies.

6 Transitions

6.1 2001

1. Performer: 1. Mezié Customer: United Technologies Research Center, Hartford, Connecticut.
Contact: Dr. Satish Narayanan. Result: Discussion of methods of analysis and experimentation
for jet noise reduction 2. Performer: 1. Mezié Customer: United Technologies Research Center,
Hartford, Connecticut. Contact: Dr. Andrzej Banaszuk. Result: Shear flow control program.

6.2 2002

1. Performer: 1. Mezi¢ Customer: United Technologies Research Center, Hartford, Connecticut.
Contact: Dr. Andrzej Banaszuk. Result: Shear flow control program. 2. Performer: I. Mezié
Customer: United Technologies Research Center, Hartford, Connecticut. Contact: Dr. Mark Myers.
Result: Planning and technical contributions to building systems modeling and control; planning
and technical contributions to the uncertainty analysis program.

6.3 2003

1. Performer: 1. Mezié Customer: United Technologies Research Center, Hartford, Connecticut.
Contact: Dr. Andrzej Banaszuk. Result: Control of combustion instabilities presented in [11].
2. Performer: 1. Mezi¢ Customer: United Technologies Research Center, Hartford, Connecticut.
Contact: Dr. Mark Myers. Result: Planning and technical contributions to the uncertainty analysis
program. ‘
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7 Honors/Awards

The PI has been awarded (jointly with Domenico D’Alessandro and Mohammed Dahleh) the George
S. Axelby Outstanding Paper Award (IEEE Transactions on Automatic Control), at the CDC 2000
in Sydney for work on ”Control of Mixing: A Maximum Entropy Approach”.

The PI became an Editor for Physica D: Nonlinear Phenomena.

The PI became an Editor for Journal of Applied Mechanics.
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